Python?seaborn?barplot畫圖案例

    目錄

    默認barplot

    import seaborn as snsimport matplotlib.pyplot as plt import numpy as np sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))# 注意這個地方error bar顯示并不是標準差

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    使用案例

    # import librariesimport seaborn as snsimport numpy as npimport matplotlib.pyplot as plt# load datasettips = sns.load_dataset("tips")# Set the figure sizeplt.figure(figsize=(14, 8))# plot a bar chartax = sns.barplot(x="day", y="total_bill", data=tips, estimator=np.mean, ci=85, capsize=.2, color='lightblue')

    修改capsize

    ax=sns.barplot(x="day",y="total_bill",data=df,capsize=1.0)plt.show()

    顯示error bar得值

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖ax=sns.barplot(x="day",y="total_bill",data=df)plt.show()for p in ax.lines:    width = p.get_linewidth()    xy = p.get_xydata() # 顯示error bar得值    print(xy)    print(width)    print(p)

    [[ 0.         15.85041935] [ 0.         19.64465726]]2.7Line2D(_line0)[[ 1.         13.93096053] [ 1.         21.38463158]]2.7Line2D(_line1)[[ 2.         18.57236207] [ 2.         22.40351437]]2.7Line2D(_line2)[[ 3.         19.66244737] [ 3.         23.50109868]]2.7Line2D(_line3)

    annotata error bar

    fig, ax = plt.subplots(figsize=(8, 6))sns.barplot(x='day', y='total_bill', data=df, capsize=0.2, ax=ax)# show the meanfor p in ax.patches:    h, w, x = p.get_height(), p.get_width(), p.get_x()    xy = (x + w / 2., h / 2)    text = f'Mean:n{h:0.2f}'    ax.annotate(text=text, xy=xy, ha='center', va='center')ax.set(xlabel='day', ylabel='total_bill')plt.show()

    error bar選取sd

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci="sd",capsize=1.0)## 注意這個ci參數plt.show()print(df.groupby("day").agg({"total_bill":[np.mean]}))print(df.groupby("day").agg({"total_bill":[np.std]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122

    設置置信區間(68)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=68,capsize=1.0)## 注意這個ci參數plt.show()

    設置置信區間(95)

    import seaborn as snsimport matplotlib.pyplot as plt sns.set_theme(style="whitegrid")df = sns.load_dataset("tips")#默認畫條形圖sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()#計算平均值看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.mean]}))

         total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000

    dataframe aggregate函數使用

    #計算平均值看是否和條形圖得高度一致df = sns.load_dataset("tips")print("="*20)print(df.groupby("day").agg({"total_bill":[np.mean]})) # 分組求均值print("="*20)print(df.groupby("day").agg({"total_bill":[np.std]})) # 分組求標準差print("="*20)print(df.groupby("day").agg({"total_bill":"nunique"})) # 這里統計得是不同得數目print("="*20)print(df.groupby("day").agg({"total_bill":"count"})) # 這里統計得是每個分組樣本得數量print("="*20)print(df["day"].value_counts())print("="*20)
    ====================     total_bill           meandayThur  17.682742Fri   17.151579Sat   20.441379Sun   21.410000====================     total_bill            stddayThur   7.886170Fri    8.302660Sat    9.480419Sun    8.832122====================      total_billdayThur          61Fri           18Sat           85Sun           76====================      total_billdayThur          62Fri           19Sat           87Sun           76====================Sat     87Sun     76Thur    62Fri     19Name: day, dtype: int64====================

    dataframe aggregate 自定義函數

    import numpy as npimport pandas as pddf = pd.DataFrame({'Buy/Sell': [1, 0, 1, 1, 0, 1, 0, 0],                   'Trader': ['A', 'A', 'B', 'B', 'B', 'C', 'C', 'C']})print(df)def categorize(x):    m = x.mean()    return 1 if m > 0.5 else 0 if m < 0.5 else np.nanresult = df.groupby(['Trader'])['Buy/Sell'].agg([categorize, 'sum', 'count'])result = result.rename(columns={'categorize' : 'Buy/Sell'})result
       Buy/Sell Trader0         1      A1         0      A2         1      B3         1      B4         0      B5         1      C6         0      C7         0      C

    dataframe aggregate 自定義函數2

    df = sns.load_dataset("tips")#默認畫條形圖def custom1(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+1.96*s/np.sqrt(n)def custom2(x):    m = x.mean()    s = x.std()    n = x.count()# 統計個數    #print(n)    return m+s/np.sqrt(n)sns.barplot(x="day",y="total_bill",data=df,ci=95)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom1]})) # 分組求標準差sns.barplot(x="day",y="total_bill",data=df,ci=68)plt.show()print(df.groupby("day").agg({"total_bill":[np.std,custom2]})) #

    ?[外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-pkCx72ui-1658379974318)(output_24_0.png)]

         total_bill            std    custom1dayThur   7.886170  19.645769Fri    8.302660  20.884910Sat    9.480419  22.433538Sun    8.832122  23.395703

    [外鏈圖片轉存失敗,源站可能有防盜鏈機制,建議將圖片保存下來直接上傳(img-GFyIePmW-1658379974318)(output_24_2.png)]

         total_bill            std    custom2dayThur   7.886170  18.684287Fri    8.302660  19.056340Sat    9.480419  21.457787Sun    8.832122  22.423114

    seaborn顯示網格

    ax=sns.barplot(x="day",y="total_bill",data=df,ci=95)ax.yaxis.grid(True) # Hide the horizontal gridlinesax.xaxis.grid(True) # Show the vertical gridlines

    seaborn設置刻度

    fig, ax = plt.subplots(figsize=(10, 8))sns.barplot(x="day",y="total_bill",data=df,ci=95,ax=ax)ax.set_yticks([i for i in range(30)])ax.yaxis.grid(True) # Hide the horizontal gridlines

    使用其他estaimator

    #estimator 指定條形圖高度使用相加得和sns.barplot(x="day",y="total_bill",data=df,estimator=np.sum)plt.show()#計算想加和看是否和條形圖得高度一致print(df.groupby("day").agg({"total_bill":[np.sum]}))'''     total_bill            sumdayFri      325.88Sat     1778.40Sun     1627.16Thur    1096.33'''

    到此這篇關于Python seaborn barplot畫圖案例得內容就介紹到這了,更多相關Python seaborn barplot 內容請搜索之家以前得內容或繼續瀏覽下面得相關內容希望大家以后多多支持之家!

    聲明:所有內容來自互聯網搜索結果,不保證100%準確性,僅供參考。如若本站內容侵犯了原著者的合法權益,可聯系我們進行處理。
    發表評論
    更多 網友評論1 條評論)
    暫無評論

    返回頂部

    主站蜘蛛池模板: 久久无码一区二区三区少妇| 制服中文字幕一区二区| 天堂不卡一区二区视频在线观看| 国产高清在线精品一区小说 | 午夜天堂一区人妻| 无码福利一区二区三区| 国产午夜精品一区理论片飘花| 日韩精品一区二区三区国语自制| 中文字幕日韩一区| 国产亚洲一区二区精品| 国产精品女同一区二区久久 | 亚洲欧美日韩一区二区三区| 自慰无码一区二区三区| 中文字幕一区二区三区在线播放 | 久草新视频一区二区三区| 一区二区三区杨幂在线观看| 国产一区高清视频| 日本精品3d动漫一区二区| 在线视频亚洲一区| 国产一区精品视频| 国产精品一区二区四区| 国产一区二区三区樱花动漫| 国产精品99精品一区二区三区| 精品不卡一区二区| 无码日韩人妻av一区免费| 精品无码一区二区三区爱欲 | 国偷自产一区二区免费视频| 一区二区三区影院| 日本不卡在线一区二区三区视频| 中文字幕Av一区乱码| 国产在线无码一区二区三区视频| 99久久精品国产免看国产一区| 99精品国产高清一区二区三区| 日韩精品一区二区三区大桥未久| 久久国产一区二区三区| 亚洲一区在线视频| 欧洲亚洲综合一区二区三区| 一区二区在线视频免费观看| 国产在线精品一区二区高清不卡| 亚洲AV日韩AV天堂一区二区三区| 中文字幕精品一区影音先锋|