亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

學(xué)術(shù)活動(dòng)
06
2025-11
[ 大師講壇 ]
【大師講壇】第270期:石墨烯與層狀材料在光子學(xué)與光電子學(xué)中的應(yīng)用
石墨烯與層狀材料在光子學(xué)與光電子學(xué)領(lǐng)域展現(xiàn)出巨大潛力。在這些領(lǐng)域中,它們的光學(xué)與電學(xué)特性得以充分結(jié)合,并且石墨烯無(wú)帶隙的特點(diǎn)亦可轉(zhuǎn)化為優(yōu)勢(shì)。石墨烯中狄拉克電子的線性色散關(guān)系,使其能夠?qū)崿F(xiàn)超寬譜帶的可調(diào)諧性,以及通過(guò)柵壓調(diào)控、在超寬帶寬內(nèi)實(shí)現(xiàn)三次諧波增強(qiáng),這為光通信與信號(hào)處理領(lǐng)域所需的電可調(diào)寬帶頻率轉(zhuǎn)換器開(kāi)辟了道路。由于泡利阻塞效應(yīng),石墨烯中可觀察到可飽和吸收現(xiàn)象,該特性可被用于實(shí)現(xiàn)多種超快與寬帶激光器的鎖模運(yùn)作。石墨烯集成光子學(xué)為下一代數(shù)據(jù)通信與電信中所需的調(diào)制器、探測(cè)器和開(kāi)關(guān)的晶圓級(jí)制造提供了一個(gè)平臺(tái)。這些功能可通過(guò)將石墨烯層置于作為無(wú)源光波導(dǎo)的光波導(dǎo)頂端來(lái)實(shí)現(xiàn),從而簡(jiǎn)化現(xiàn)有技術(shù)。基于多種原子晶體的異質(zhì)結(jié)構(gòu),其性質(zhì)既不同于其單一組成成分,也不同于其三維體材料。將這些晶體以堆疊方式組合,可用于設(shè)計(jì)此類異質(zhì)結(jié)構(gòu)的功能,并應(yīng)用于新型發(fā)光器件中,例如單光子發(fā)射器和可調(diào)諧發(fā)光二極管。 Graphene and layered materials have great potential in photonics and optoelectronics, where the combination of their optical and electronic properties can be fully exploited, and the absence of a bandgap in graphene can be beneficial. The linear dispersion of the Dirac electrons in graphene enables ultra-wide-band tunability as well as gate controllable third-harmonic enhancement over an ultra-broad bandwidth, paving the way for electrically tuneable broadband frequency converters for optical communications and signal processing. Saturable absorption is observed as a consequence of Pauli blocking and can be exploited for mode-locking of a variety of ultrafast and broadband lasers. Graphene integrated photonics is a platform for wafer scale manufacturing of modulators, detectors and switches for next generation datacom and telecom. These functions can be achieved with graphene layers placed on top of optical waveguides, acting as passive light-guides, thus simplifying the current technology. Heterostructures based on layers of atomic crystals have properties different from those of their individual constituents and of their three dimensional counterparts. The combinations of such crystals in stacks can be used to design the functionalities of such heterostructures, that can be exploited in novel light emitting devices, such as single photon emitters, and tuneable light emitting diodes.
Andrea Ferrari
英國(guó)皇家工程院院士
30
2025-10
[ 大師講壇 ]
【大師講壇】第269期:CryoSeek(酷尋)——以結(jié)構(gòu)為先導(dǎo)的生物學(xué)發(fā)現(xiàn)新范式
糖質(zhì),又稱為碳水化合物,是地球上含量最為豐富的生物大分子。盡管其生理功能至關(guān)重要,糖質(zhì)的結(jié)構(gòu)生物學(xué)研究卻顯著滯后于蛋白質(zhì)與核酸。前期對(duì)于人源葡萄糖轉(zhuǎn)運(yùn)蛋白 GLUT3 與 D-葡萄糖的1.5 ?分辨率晶體結(jié)構(gòu)清晰表明,該轉(zhuǎn)運(yùn)體能夠識(shí)別α與β兩種變旋異構(gòu)體。這一發(fā)現(xiàn)凸顯了高分辨率結(jié)構(gòu)在闡明糖質(zhì)分子的立體化學(xué)方面的重要作用。雖然冷凍電鏡已能夠解析膜蛋白胞外修飾的糖鏈結(jié)構(gòu),但通常僅限于修飾位點(diǎn)附近的少數(shù)糖殘基,且難以獲得高分辨率結(jié)構(gòu)。近年來(lái),我們一直致力于獲得完整糖鏈的高分辨率結(jié)構(gòu),但進(jìn)展有限。通過(guò)建立名為“CryoSeek”的新范式,我們最近成功解析了多種具有高階結(jié)構(gòu)組裝特征的糖質(zhì)分子的高分辨率結(jié)構(gòu)。 Carbohydrates are the most abundant biomolecules on Earth. Despite their physiological importance, the structural biology of glycans has significantly lagged behind that of proteins and nucleic acids. The crystal structure of the human glucose transporter GLUT3 bound to D-glucose at 1.5 ? resolution clearly demonstrates that the transporter can recognize both α- and β-anomers. This finding underscores the power of high-resolution structures in elucidating the stereochemistry of sugars. While cryo-EM has enabled the structural resolution of glycan chains that modify the extracellular surface of membrane proteins, it has largely been limited to a small number of sugar residues near the modification site and at moderate resolutions. We have been striving to solve high-resolution structures of full glycan chains with little success until recently. By establishing a new paradigm called CryoSeek, we have successfully resolved the high-resolution structures of numerous glycans with higher-order structural assemblies.
顏寧
中國(guó)科學(xué)院院士,美國(guó)國(guó)家科學(xué)院外籍院士
24
2025-10
[ 大師講壇 ]
【大師講壇】第267期:從超分子聚合物到功能材料及手性系統(tǒng)
自聚合物發(fā)現(xiàn)以來(lái),科學(xué)家對(duì)其結(jié)構(gòu)始終存在爭(zhēng)論。在Hermann Staudinger提出大分子概念前,學(xué)界普遍認(rèn)為聚合物源于小顆粒或分子的膠體聚集。自1920年起,聚合物和大分子被認(rèn)為是通過(guò)共價(jià)鍵將單體在二維或三維空間連接構(gòu)成的材料。盡管大分子鏈間超分子相互作用的重要性不言而喻,但當(dāng)時(shí)難以設(shè)想基于小分子相互作用可構(gòu)建聚合物材料。超分子化學(xué)的突破性進(jìn)展表明,通過(guò)強(qiáng)方向性次級(jí)相互作用可實(shí)現(xiàn)小分子構(gòu)建聚合物材料——超分子聚合物領(lǐng)域由此誕生。通過(guò)控制分子片段間的超分子相互作用,設(shè)計(jì)具有響應(yīng)性與動(dòng)態(tài)功能的新型功能材料變得更為容易。其中,對(duì)分子時(shí)空位置的控制是獲得目標(biāo)功能的關(guān)鍵。本次講座將探討手性在時(shí)空維度中的典型案例及涌現(xiàn)機(jī)制,同時(shí)聚焦非共價(jià)合成中的分子相互作用,探討其在自旋過(guò)濾、生物材料及OLED等領(lǐng)域的應(yīng)用前景。 Since the discovery of the first polymers, scientists have debated their structures. Before Hermann Staudinger published the brilliant concept of macromolecules, it was generally assumed that the properties of polymers were based on the colloidal aggregation of small particles or molecules. Since 1920, polymers and macromolecules have been synonymous with each other; i.e. materials made by means of many covalent bonds that connect monomers in 2 or 3 dimensions. Although supramolecular interactions between macromolecular chains are clearly important, e.g. in nylons, it was unthinkable to imagine polymeric materials based on the interaction of small molecules. Breakthroughs in supramolecular chemistry have shown that polymer materials can be made by small molecules using strong directional secondary interactions; the field of supramolecular polymers was born. In a sense, we have come full circle [1]. By controlling the supramolecular interactions between molecular fragments, it became easier to design systems materials with unconventional responsive behavior and dynamic functionalities. In all cases, control over the position of the molecules in time and space is essential to achieve the required functionality. In our group we focus on the emergence of homochirality in time and space and some examples of this challenge will be discussed in the lecture. We use this to design supramolecular materials and chiral systems with highly ordered morphologies that change their properties on the action of light, pressure, temperature, or the addition of chemicals. On the other hand, applications in spin filtering, biomaterials and OLEDs will be discussed with a continues focus on the molecular interactions using non-covalent synthesis [2].
E.W. “Bert” Meijer
美國(guó)國(guó)家科學(xué)院外籍院士
24
2025-10
[ 大師講壇 ]
【大師講壇】第268期:基因打靶的誕生&ESCRT通路在HIV出芽及細(xì)胞生物學(xué)中的作用
基因打靶(gene targeting)的誕生,標(biāo)志著分子遺傳學(xué)從描述性研究進(jìn)入可定向改造基因功能的時(shí)代。上世紀(jì)八十年代,馬里奧·卡佩奇教授通過(guò)在哺乳動(dòng)物胚胎干細(xì)胞中實(shí)現(xiàn)同源重組,首次建立了在基因組特定位點(diǎn)進(jìn)行精準(zhǔn)修飾的技術(shù)。這一突破使科學(xué)家能夠“敲除”或“敲入”特定基因,從而系統(tǒng)地研究其在發(fā)育、生理與疾病中的功能。該方法孕育了“敲除小鼠”模型,為人類遺傳病、腫瘤和神經(jīng)系統(tǒng)疾病研究奠定了基礎(chǔ),并推動(dòng)了現(xiàn)代基因治療與精準(zhǔn)醫(yī)學(xué)的發(fā)展。本報(bào)告將回顧基因打靶技術(shù)從概念到實(shí)現(xiàn)的科學(xué)歷程,探討其對(duì)生命科學(xué)與醫(yī)學(xué)的深遠(yuǎn)影響。 Gene targeting marked the transition of molecular genetics from largely descriptive studies to an era of targeted engineering of gene function. In the 1980s, Professor Mario R. Capecchi achieved homologous recombination in mammalian embryonic stem cells, thereby establishing the first technology for precise modification at defined genomic loci. This breakthrough enabled scientists to knock out or knock in specific genes and to systematically interrogate their roles in development, physiology, and disease. The method gave rise to knockout mouse models, laid the foundation for research on human genetic disorders, cancer, and neurological diseases, and propelled the development of modern gene therapy and precision medicine. This lecture will retrace the scientific journey from concept to realization and explore the profound impact of gene targeting on the life sciences and medicine. 為了傳播感染,人類免疫缺陷病毒(HIV)需形成具有包膜的球形顆粒,并通過(guò)質(zhì)膜出芽釋放。我們研究發(fā)現(xiàn),HIV-1及其他逆轉(zhuǎn)錄病毒通過(guò)劫持宿主的內(nèi)體分選轉(zhuǎn)運(yùn)(ESCRT)通路的活性實(shí)現(xiàn)出芽。我們與合作團(tuán)隊(duì)進(jìn)一步研究了ESCRT通路在HIV出芽、細(xì)胞分裂及其他關(guān)鍵細(xì)胞功能中的作用,并解析了十余種不同ESCRT因子及復(fù)合體的三維結(jié)構(gòu)。這些研究揭示了ESCRT組分如何組裝、相互作用并識(shí)別病毒及泛素化蛋白,ESCRT-III亞基如何通過(guò)構(gòu)象變化形成能夠重塑細(xì)胞膜的纖絲狀結(jié)構(gòu),以及ATP水解所釋放的能量如何驅(qū)動(dòng)膜重塑。 To spread infections, the human immunodeficiency virus (HIV) must form enveloped spherical particles that bud through the plasma membrane. We have demonstrated that HIV-1 and other retroviruses bud from cells by usurping the activity of the host Endosomal Sorting Pathway Required for Transport (ESCRT) pathway. We and our collaborators have also explored the functions of the ESCRT pathway in HIV budding, cell division and other cellular functions, and determined the three-dimensional structures of more than a dozen different ESCRT factors and complexes. This work has helped reveal how ESCRT components assemble, interact, and recognize viral and ubiquitylated proteins, how ESCRT-III subunits can change conformations and form filaments that remodel membranes, and how the energy of ATP hydrolysis is used to power membrane remodeling.
Mario R. Capecchi
美國(guó)國(guó)家科學(xué)院院士 2007年諾貝爾生理學(xué)或醫(yī)學(xué)獎(jiǎng)獲得者
亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      国产精品网站在线| 91精品国产综合久久久久| 亚洲欧美另类久久久精品2019| 日韩欧美在线1卡| 欧美日韩午夜精品| 99久久99久久精品国产片果冻| 国产一区二区看久久| 久久精品999| 日韩精品电影在线| 欧美aaaaaa午夜精品| 日韩和的一区二区| 免费在线观看精品| 久久国产精品一区二区| 老司机免费视频一区二区| 蜜臀99久久精品久久久久久软件| 亚洲综合色丁香婷婷六月图片| 亚洲综合色成人| 亚洲国产成人精品视频| 日韩精彩视频在线观看| 久久精品国产一区二区| 国产乱码精品一区二区三| 成人黄动漫网站免费app| 99国产麻豆精品| 欧美在线看片a免费观看| 欧美日韩在线不卡| 欧美二区乱c少妇| 欧美精品一区二区蜜臀亚洲| 欧美激情艳妇裸体舞| 亚洲欧洲韩国日本视频| 亚洲五月六月丁香激情| 精品一区二区三区免费观看| 极品瑜伽女神91| 成人激情文学综合网| 91福利在线播放| 欧美成人一区二区三区| 亚洲欧洲综合另类在线| 人人爽香蕉精品| 不卡在线观看av| 欧美一区二区三区男人的天堂| 久久久久久久久久久99999| 欧美一区二区三区免费大片| 久久久www成人免费毛片麻豆 | 91在线视频播放地址| 欧美日本一区二区三区四区 | 亚洲成人动漫一区| 老司机免费视频一区二区| 欧美在线播放高清精品| 久久久精品天堂| 一区二区三区不卡视频 | 免费人成黄页网站在线一区二区| 黄色精品一二区| 欧美一级久久久久久久大片| 欧美刺激脚交jootjob| 色综合久久综合网| 欧美成人福利视频| 一区二区三区在线视频观看 | 国产伦精一区二区三区| 欧美少妇xxx| 中文字幕av一区二区三区免费看 | 26uuu色噜噜精品一区| 亚洲一区二区三区中文字幕| 懂色av一区二区三区蜜臀| 91.成人天堂一区| 一区二区三区四区在线免费观看 | 欧美精品一级二级三级| 国产精品理论片| 国产综合成人久久大片91| 欧美日韩欧美一区二区| 亚洲精品国产成人久久av盗摄| 国产乱子伦视频一区二区三区| 制服丝袜中文字幕一区| 天堂资源在线中文精品| 欧洲国内综合视频| 亚洲一区视频在线观看视频| 色综合视频一区二区三区高清| 国产精品成人在线观看| 成人免费观看视频| 久久久99精品久久| 国产精品91xxx| 国产日韩三级在线| 夫妻av一区二区| 国产欧美日韩精品a在线观看| 韩国中文字幕2020精品| 精品久久久久久久久久久久包黑料| 五月开心婷婷久久| 7777女厕盗摄久久久| 男女性色大片免费观看一区二区 | 国产欧美一区二区精品久导航| 国产大陆a不卡| 视频一区视频二区中文字幕| 1024成人网| 国产精品美女久久久久av爽李琼| 91精品蜜臀在线一区尤物| 99麻豆久久久国产精品免费| 色综合久久中文综合久久牛| 国产精品久久久久精k8| 免费观看日韩电影| 欧美一区二区三区免费在线看| 奇米精品一区二区三区四区| 日韩欧美一级片| 国产精品1区2区3区在线观看| 国产亚洲欧美一区在线观看| 99久久久久久| 亚洲成人动漫在线观看| 日韩亚洲欧美一区| 国产精品主播直播| 亚洲丝袜精品丝袜在线| 欧美日韩一区二区三区在线| 日本午夜一区二区| 国产视频一区二区在线观看| 91猫先生在线| 麻豆精品视频在线观看| 欧美国产禁国产网站cc| 欧美午夜不卡视频| 国产成人在线视频网址| 亚洲成人免费在线| 中文字幕免费观看一区| 91精品午夜视频| 成人av第一页| 久久精品国产精品亚洲综合| 亚洲精品你懂的| 久久综合精品国产一区二区三区 | 一卡二卡三卡日韩欧美| 欧美一级爆毛片| 91一区二区在线| 蜜臀av一区二区三区| 亚洲欧美视频在线观看| 精品99999| 欧美猛男男办公室激情| av亚洲精华国产精华| 久久精品国产亚洲高清剧情介绍 | 91精品福利视频| 日本一区二区三区电影| 五月天亚洲精品| 91久久免费观看| 中文字幕在线一区| 国产成人鲁色资源国产91色综 | 色婷婷国产精品久久包臀| 欧美一区二区久久| 色中色一区二区| 亚洲精品一区二区三区香蕉| 成人高清免费观看| 久久99国产精品免费| 亚洲一二三区在线观看| 欧美极品美女视频| 日韩欧美国产电影| 欧美日韩国产小视频在线观看| 色先锋久久av资源部| 国产99久久久国产精品潘金| 久久99国产精品麻豆| 美日韩一区二区| 午夜免费欧美电影| 亚洲一级二级在线| 亚洲va在线va天堂| 亚洲综合一区在线| 中文字幕亚洲视频| 中文字幕不卡在线观看| 日本一区二区视频在线观看| 精品国产乱码久久久久久老虎| 欧美一区二区福利在线| 欧美成人女星排行榜| 日韩一区二区视频| 91精品国产色综合久久久蜜香臀| 欧美三级中文字幕| 91麻豆精品国产91久久久更新时间 | 国产精品国产三级国产三级人妇| 国产亚洲精品福利| 国产精品夫妻自拍| 亚洲欧美另类图片小说| 亚洲丝袜自拍清纯另类| 亚洲欧美日本韩国| 亚洲电影在线免费观看| 蜜臀av一区二区三区| 国产一区不卡精品| 99国产精品视频免费观看| 在线视频你懂得一区二区三区| 欧美日韩在线播放三区| 精品国产一二三区| 国产精品免费看片| 亚洲黄色性网站| 男人的天堂亚洲一区| 国产成人精品www牛牛影视| www.欧美.com| 欧美日韩国产在线播放网站| 国产一区二区三区观看| 久久精品国产精品亚洲综合| 韩国欧美国产1区| 久久久久久电影| 久久精品夜色噜噜亚洲aⅴ| 日韩视频免费观看高清完整版 | 99久久亚洲一区二区三区青草| 国产成人日日夜夜| 成人美女视频在线观看18| 99久久综合国产精品| 欧美午夜电影网| 国产亚洲美州欧州综合国| 一区二区在线观看免费| 六月丁香婷婷久久| av资源站一区| 日韩欧美亚洲一区二区|