Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data to uncover neural dynamics. Here, we fill this gap with a novel encoding method, CEBRA, that jointly uses behavioural and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce both consistent and high-performance latent spaces. We show that consistency can be used as a metric for uncovering meaningful differences, and the inferred latents can be used for decoding. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, produces consistent latent spaces across 2-photon and Neuropixels data, and can provide rapid, high-accuracy decoding of natural movies from visual cortex.

Software

You can find our official implementation of the CEBRA algorithm on GitHub: Watch and Star the repository to be notified of future updates and releases. You can also follow us on Twitter for updates on the project.

If you are interested in collaborations, please contact us via email.

BibTeX

Please cite our papers as follows:

@article{schneider2023cebra,
  author={Steffen Schneider and Jin Hwa Lee and Mackenzie Weygandt Mathis},
  title={Learnable latent embeddings for joint behavioural and neural analysis},
  journal={Nature},
  year={2023},
  month={May},
  day={03},
  issn={1476-4687},
  doi={10.1038/s41586-023-06031-6},
  url={https://doi.org/10.1038/s41586-023-06031-6}
}
@inproceedings{schneider2025timeseries,
  title={Time-series attribution maps with regularized contrastive learning},
  author={Steffen Schneider and Rodrigo Gonz{\'a}lez Laiz and Anastasiia Filippova and Markus Frey and Mackenzie Weygandt Mathis},
  booktitle={The 28th International Conference on Artificial Intelligence and Statistics},
  year={2025},
  url={https://proceedings.mlr.press/v258/schneider25a.html}
}

Impact & Citations

CEBRA has been cited in numerous high-impact publications across neuroscience, machine learning, and related fields. Our work has influenced research in neural decoding, brain-computer interfaces, computational neuroscience, and machine learning methods for time-series analysis.

View All Citations on Google Scholar

Our research has been cited in proceedings and journals including Nature Science ICML Nature Neuroscience ICML Neuron NeurIPS ICLR and others.

MLAI Logo
? 2021 - present | EPFL Mathis Laboratory
Webpage designed using Bootstrap 5 and Fontawesome 5.
亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      色综合久久综合网| 99久久久久久| 免费人成精品欧美精品| 男男gaygay亚洲| 国产乱淫av一区二区三区| 成人性视频免费网站| 91老师片黄在线观看| 欧美美女一区二区在线观看| 精品第一国产综合精品aⅴ| 日本一区二区成人| 亚洲成人av一区| 狠狠色丁香九九婷婷综合五月| 成人国产电影网| 欧美色中文字幕| 亚洲精品一区二区三区精华液| 国产精品久久99| 首页亚洲欧美制服丝腿| 国产精品白丝jk黑袜喷水| 在线观看欧美日本| 国产亚洲精品精华液| 一区二区三区不卡视频| 精品一二线国产| 日本精品一区二区三区四区的功能| 91精品国产综合久久香蕉麻豆| 欧美国产一区二区| 免费看精品久久片| 在线影院国内精品| 久久久91精品国产一区二区三区| 亚洲图片欧美色图| www.成人网.com| 欧美www视频| 亚洲成人av福利| 不卡的av电影| 日韩免费一区二区| 亚洲国产精品久久艾草纯爱| 成人午夜精品一区二区三区| 欧美一区二区二区| 亚洲综合自拍偷拍| 不卡av免费在线观看| 久久你懂得1024| 麻豆国产欧美一区二区三区| 久久精品99国产精品日本| 久久99九九99精品| 麻豆视频一区二区| 欧美日韩精品三区| 亚洲免费观看视频| 成人黄色在线网站| 国产精品拍天天在线| 国产一区二区三区在线观看免费| 91麻豆精品国产无毒不卡在线观看 | 中文字幕不卡在线播放| 麻豆91精品91久久久的内涵| 欧美日韩二区三区| 一区二区理论电影在线观看| 色老综合老女人久久久| 亚洲同性同志一二三专区| 丁香桃色午夜亚洲一区二区三区| 久久天天做天天爱综合色| 极品少妇一区二区| 日韩欧美中文一区二区| 久久电影网站中文字幕| 日韩欧美国产三级电影视频| 麻豆91精品视频| 91精品国产欧美一区二区18 | 国模娜娜一区二区三区| 欧美成人一级视频| 精品制服美女丁香| 2023国产精品| 国产大陆亚洲精品国产| 国产网站一区二区| hitomi一区二区三区精品| 国产精品黄色在线观看| 99久久精品免费看| 一区二区三区免费观看| 在线观看日韩毛片| 日本不卡一二三| 精品久久久久久久久久久久久久久 | 97久久精品人人做人人爽50路 | 中文字幕视频一区| 丝袜美腿亚洲一区二区图片| 欧美精选在线播放| 激情伊人五月天久久综合| 久久久蜜桃精品| 91免费看视频| 青青草97国产精品免费观看 | 久久精品理论片| 国产欧美日本一区二区三区| www.在线欧美| 亚洲v中文字幕| 欧美成va人片在线观看| 大桥未久av一区二区三区中文| 亚洲女同一区二区| 日韩欧美黄色影院| 不卡av免费在线观看| 亚洲电影在线播放| 久久中文娱乐网| 色综合色狠狠天天综合色| 首页国产欧美久久| 中文字幕高清一区| 51精品久久久久久久蜜臀| 国产一区视频导航| 亚洲国产精品久久久男人的天堂| 2014亚洲片线观看视频免费| 欧美在线免费观看视频| 国产剧情av麻豆香蕉精品| 亚洲一区av在线| 国产精品卡一卡二| 色综合久久天天| 欧美亚洲一区二区在线观看| 欧美精品电影在线播放| 国产精品日日摸夜夜摸av| 日韩欧美在线不卡| 色欧美日韩亚洲| 国产白丝网站精品污在线入口| 94-欧美-setu| 2024国产精品| 日韩欧美一区二区视频| 在线免费视频一区二区| 国产激情视频一区二区在线观看| 日韩一区二区三区在线| 国产在线精品免费av| 天天综合日日夜夜精品| 亚洲欧美区自拍先锋| 欧美极品aⅴ影院| 日韩免费看网站| 欧美剧在线免费观看网站| 91视频观看免费| 91蝌蚪porny成人天涯| 久久99久久精品欧美| 日韩精品亚洲一区二区三区免费| 亚洲成av人片观看| 免费成人av在线| 麻豆国产欧美日韩综合精品二区 | 亚洲成人动漫av| 天堂影院一区二区| 丝袜诱惑亚洲看片 | 日韩欧美一区在线| 久久综合九色综合欧美98| 久久精品一区四区| 欧美国产成人在线| 亚洲人精品午夜| 亚洲综合丁香婷婷六月香| 亚洲国产欧美一区二区三区丁香婷| 亚洲综合在线五月| 美女网站在线免费欧美精品| 国精品**一区二区三区在线蜜桃| 激情文学综合网| 成人久久视频在线观看| 色哟哟欧美精品| 欧美精品久久天天躁| 欧美一级一区二区| 欧美久久婷婷综合色| 精品精品欲导航| 国产午夜亚洲精品不卡| 国产精品国产自产拍高清av | 久久久久成人黄色影片| 欧美日韩一区二区在线观看视频| 成人黄色电影在线| 色婷婷综合视频在线观看| 99精品欧美一区二区蜜桃免费 | 日韩一区二区三区在线视频| 久久国产欧美日韩精品| 亚洲视频每日更新| 天天操天天色综合| 日本一区二区三区dvd视频在线| 欧美性色黄大片| 久久你懂得1024| 在线不卡a资源高清| 国产精品成人免费| 午夜精品久久一牛影视| 亚洲欧洲精品一区二区精品久久久 | 欧美在线一区二区| 亚洲成人激情社区| 国产寡妇亲子伦一区二区| 日韩和欧美一区二区| 精品91自产拍在线观看一区| 国产欧美日韩综合精品一区二区| 日韩一区二区在线看| 精品一区二区国语对白| 久久99在线观看| 日本欧美大码aⅴ在线播放| 成人国产亚洲欧美成人综合网| 三级不卡在线观看| 亚洲国产日韩一区二区| 高清av一区二区| 狠狠色丁香久久婷婷综合_中| 日韩中文字幕区一区有砖一区 | www.亚洲激情.com| 色婷婷av一区二区三区软件| 亚洲精品中文在线影院| 欧美日韩情趣电影| 国产乱码精品一区二区三区av | 国产精品99久久久久久宅男| 久久精品一区四区| 99这里都是精品| 久久夜色精品国产噜噜av| 91色视频在线| 国产一区欧美二区| 国产麻豆精品在线| 久久精品99久久久|