Mapping behavioural actions to neural activity is a fundamental goal of neuroscience. As our ability to record large neural and behavioural data increases, there is growing interest in modeling neural dynamics during adaptive behaviors to probe neural representations. In particular, neural latent embeddings can reveal underlying correlates of behavior, yet, we lack non-linear techniques that can explicitly and flexibly leverage joint behavior and neural data to uncover neural dynamics. Here, we fill this gap with a novel encoding method, CEBRA, that jointly uses behavioural and neural data in a (supervised) hypothesis- or (self-supervised) discovery-driven manner to produce both consistent and high-performance latent spaces. We show that consistency can be used as a metric for uncovering meaningful differences, and the inferred latents can be used for decoding. We validate its accuracy and demonstrate our tool's utility for both calcium and electrophysiology datasets, across sensory and motor tasks, and in simple or complex behaviors across species. It allows for single and multi-session datasets to be leveraged for hypothesis testing or can be used label-free. Lastly, we show that CEBRA can be used for the mapping of space, uncovering complex kinematic features, produces consistent latent spaces across 2-photon and Neuropixels data, and can provide rapid, high-accuracy decoding of natural movies from visual cortex.

Pre-Print

The pre-print is available on arxiv at arxiv.org/abs/2204.00673.

Software

You can find our official implementation of the CEBRA algorithm on GitHub: Watch and Star the repository to be notified of future updates and releases. You can also follow us on Twitter or subscribe to our mailing list for updates on the project.

If you are interested in collaborations, please contact us via email.

BibTeX

Please cite our paper as follows:

@article{schneider2023cebra,
  author={Schneider, Steffen and Lee, Jin Hwa and Mathis, Mackenzie Weygandt},
  title={Learnable latent embeddings for joint behavioural and neural analysis},
  journal={Nature},
  year={2023},
  month={May},
  day={03},
  issn={1476-4687},
  doi={10.1038/s41586-023-06031-6},
  url={https://doi.org/10.1038/s41586-023-06031-6}
}
Webpage designed using Bootstrap 5 and Fontawesome 5.
主站蜘蛛池模板: 一区二区三区无码被窝影院| 精品国产一区二区三区久久影院| 国产一区二区三区小说| 久久精品亚洲一区二区| 国产一区二区三区日韩精品| 精品国产一区二区三区久| 色综合视频一区中文字幕| 成人免费一区二区无码视频| 精品国产一区二区三区香蕉| 中文无码一区二区不卡αv| 无码人妻精品一区二区蜜桃网站| 亚洲一区中文字幕在线观看| 亚洲国产精品一区二区三区在线观看| 久久91精品国产一区二区| 成人精品一区二区户外勾搭野战| 亚洲日韩AV一区二区三区中文| 亚洲中文字幕乱码一区| 一区二区三区四区在线观看视频 | 精品一区精品二区| 精品福利一区二区三区精品国产第一国产综合精品 | 亚洲福利视频一区| 亚洲国产视频一区| 国产情侣一区二区| 日韩人妻无码一区二区三区久久99| 日本一区二区在线免费观看| 国产精华液一区二区区别大吗| 国产色综合一区二区三区| 久久精品免费一区二区| 日韩经典精品无码一区| 亚洲伦理一区二区| 福利片免费一区二区三区| 国产精品视频一区二区三区四| 在线欧美精品一区二区三区| 区三区激情福利综合中文字幕在线一区亚洲视频1 | 黑巨人与欧美精品一区| 亚洲狠狠狠一区二区三区| 精品一区二区久久| 成人免费区一区二区三区| 日韩精品人妻一区二区中文八零| 日本精品一区二区在线播放| 麻豆va一区二区三区久久浪|