亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看


Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA


James Seale Smith1,2, Yen-Chang Hsu1, Lingyu Zhang1, Ting Hua1

Zsolt Kira2, Yilin Shen1, Hongxia Jin1


1Samsung Research America, 2Georgia Institute of Technology

Transactions on Machine Learning Research (TMLR) 2024


paper

A use case of our work - a mobile app sequentially learns new customized concepts. At a later time, the user can generate photos of prior learned concepts. The user should be able to generate photos with multiple concepts together, thus ruling out methods such as per-concept adapters or single-image conditioned diffusion. Furthermore, the concepts are fine-grained, and simply learning new tokens or words is not effective.

Abstract


Recent works demonstrate a remarkable ability to customize text-to-image diffusion models while only providing a few example images. What happens if you try to customize such models using multiple, fine-grained concepts in a sequential (i.e., continual) manner? In our work, we show that recent state-of-the-art customization of text-to-image models suffer from catastrophic forgetting when new concepts arrive sequentially. Specifically, when adding a new concept, the ability to generate high quality images of past, similar concepts degrade. To circumvent this forgetting, we propose a new method, C-LoRA, composed of a continually self-regularized low-rank adaptation in cross attention layers of the popular Stable Diffusion model. Furthermore, we use customization prompts which do not include the word of the customized object (i.e., person for a human face dataset) and are initialized as completely random embeddings. Importantly, our method induces only marginal additional parameter costs and requires no storage of user data for replay. We show that C-LoRA not only outperforms several baselines for our proposed setting of text-to-image continual customization, which we refer to as Continual Diffusion, but that we achieve a new state-of-the-art in the well-established rehearsal-free continual learning setting for image classification. The high achieving performance of C-LoRA in two separate domains positions it as a compelling solution for a wide range of applications, and we believe it has significant potential for practical impact.


Method


Our method, C-LoRA, updates the key-value (K-V) projection in U-Net cross-attention modules of Stable Diffusion using a continual, self-regulating low-rank weight adaptation. The past LoRA weight deltas are used to regulate the new LoRA weight deltas by guiding which parameters are most available to be updated. Unlike prior work, we initialize custom tokens as random features and remove the concept name (e.g., person) from the prompt.

Results: Faces


Qualitative results of continual customization using the Celeb-A HQ dataset. Results are shown for three concepts from the learning sequence sampled after training ten concepts sequentially.


Multi-concept results after training on 10 sequential tasks using Celeb-A HQ. Using standard quadrant numbering (I is upper right, II is upper left, III is lower left, IV is lower right), we label which target data belongs in which generated image by directly annotating the target data images.

Results: Landmarks


Qualitative results of continual customization using waterfalls from the Google Landmarks dataset. Results are shown for three concepts from the learning sequence sampled after training ten concepts sequentially.

BibTeX

                @article{smith2024continualdiffusion,
                  title={Continual Diffusion: Continual Customization of Text-to-Image Diffusion with C-LoRA},
                  author={Smith, James Seale and Hsu, Yen-Chang and Zhang, Lingyu and Hua, Ting and Kira, Zsolt and Shen, Yilin and Jin, Hongxia},
                  journal={Transactions on Machine Learning Research},
                  issn={2835-8856},
                  year={2024}
                }
              

亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      国产视频911| 国产精品拍天天在线| 视频在线观看一区二区三区| 中文字幕亚洲在| 久久精品视频一区二区三区| 欧美mv日韩mv国产网站| 91精品免费观看| 欧美顶级少妇做爰| 欧美色视频在线| 欧美日韩一区二区在线观看视频| 色欧美片视频在线观看| 97久久超碰精品国产| 97精品国产露脸对白| 色老汉一区二区三区| 国产v日产∨综合v精品视频| 国产精品综合一区二区三区| 精品一区二区三区在线播放 | 国产成人99久久亚洲综合精品| 精品一区二区三区免费视频| 国产精品一区二区无线| 成人精品国产福利| 91在线免费看| 99久久精品免费| 91国产免费观看| 欧美一区二区播放| 久久婷婷一区二区三区| 欧美激情一区二区在线| 亚洲黄色小说网站| 蜜臀av一区二区在线免费观看| 国产综合成人久久大片91| 成人午夜视频网站| 欧美在线观看一区二区| 精品国产乱码久久久久久久| 国产精品福利一区二区三区| 亚洲夂夂婷婷色拍ww47 | 蜜臀久久99精品久久久久久9| 久久99久久99精品免视看婷婷| 丁香婷婷深情五月亚洲| 欧美三级韩国三级日本一级| 精品裸体舞一区二区三区| 亚洲欧洲精品一区二区三区 | 欧美日韩国产一级片| 久久青草国产手机看片福利盒子| 亚洲日本va午夜在线电影| 免费成人在线视频观看| 成人午夜视频免费看| 欧美在线你懂的| 日本一区免费视频| 免费人成黄页网站在线一区二区| 成人激情视频网站| 日韩视频一区二区三区 | 欧美日韩国产首页| 国产嫩草影院久久久久| 日韩成人精品在线观看| 成人午夜伦理影院| 欧美一级专区免费大片| 成人免费视频在线观看| 九九精品一区二区| 日本精品一区二区三区高清| 久久这里只精品最新地址| 亚洲欧美偷拍另类a∨色屁股| 日韩精品91亚洲二区在线观看| 国产91丝袜在线18| 日韩欧美亚洲一区二区| 亚洲精品五月天| 国产aⅴ综合色| 日韩久久精品一区| 偷窥少妇高潮呻吟av久久免费| 色综合天天综合在线视频| 国产日本亚洲高清| 久久99日本精品| 91精品国产综合久久蜜臀| 亚洲欧洲日韩一区二区三区| 国产aⅴ精品一区二区三区色成熟| 日韩丝袜情趣美女图片| 青青草国产成人av片免费| 欧美日本视频在线| 午夜日韩在线观看| 在线不卡一区二区| 日韩综合小视频| 欧美一区在线视频| 日韩精品国产精品| 欧美一二三区在线| 久久99日本精品| 久久久另类综合| 国产成人午夜精品影院观看视频| 精品国产免费人成在线观看| 麻豆免费精品视频| 亚洲精品在线电影| 国产成人自拍在线| 国产精品网曝门| 色呦呦国产精品| 亚洲gay无套男同| 日韩一级二级三级精品视频| 美美哒免费高清在线观看视频一区二区| 欧美一级黄色录像| 黑人精品欧美一区二区蜜桃| 久久精品在这里| 97aⅴ精品视频一二三区| 亚洲午夜免费福利视频| 91精品欧美一区二区三区综合在 | 亚洲成a人片综合在线| 欧美性猛片aaaaaaa做受| 日韩电影一区二区三区| 精品三级在线观看| 丁香一区二区三区| 亚洲制服丝袜在线| 精品久久久久久久久久久院品网| 国产一区二区三区精品视频| 自拍偷拍亚洲激情| 欧美一区二区在线不卡| 国产精品99久久不卡二区| 亚洲精品久久久蜜桃| 欧美大片在线观看一区二区| 99久久精品免费| 蜜臀av一区二区在线免费观看| 亚洲欧美日韩国产手机在线| 欧美一区二区黄| 成人成人成人在线视频| 亚洲不卡一区二区三区| 精品国产凹凸成av人导航| 播五月开心婷婷综合| 日本不卡视频在线| 1区2区3区精品视频| 91精品国产综合久久小美女| 成人免费毛片片v| 日本一不卡视频| 国产精品卡一卡二| 日韩一区二区三区视频在线| 91免费小视频| 国产福利精品一区| 丝袜诱惑制服诱惑色一区在线观看 | 国产一区二区三区美女| 亚洲成人一区二区在线观看| 久久久久久久电影| 欧美丰满一区二区免费视频| 91免费国产在线观看| 国产乱码精品一区二区三区av| 亚洲制服丝袜在线| 中文字幕一区二区三区四区| 2014亚洲片线观看视频免费| 欧美人狂配大交3d怪物一区| 91搞黄在线观看| av一区二区不卡| 国产制服丝袜一区| 日本美女一区二区三区视频| 亚洲乱码日产精品bd| 国产精品美女视频| 久久综合一区二区| 日韩亚洲欧美中文三级| 欧美日韩精品三区| 色天天综合久久久久综合片| 成人午夜免费视频| 精品一区二区在线免费观看| 七七婷婷婷婷精品国产| 亚洲国产欧美在线| 亚洲日本丝袜连裤袜办公室| 国产精品丝袜久久久久久app| 国产三级精品视频| 欧美tk—视频vk| 精品久久99ma| 亚洲精品在线观| 久久综合色播五月| 91麻豆精品91久久久久久清纯| 欧美三级乱人伦电影| 欧美日本乱大交xxxxx| 欧美久久久久久蜜桃| 欧美精品在线观看播放| 欧美巨大另类极品videosbest | 一区二区三区电影在线播| 久久精品亚洲乱码伦伦中文| 精品福利一二区| 久久久久久久久蜜桃| 国产色产综合产在线视频| 亚洲国产精品黑人久久久| 中文字幕一区二区不卡 | 日韩欧美卡一卡二| 精品久久国产字幕高潮| 亚洲精品一区二区三区影院| 久久久精品国产免费观看同学| 国产欧美视频一区二区| 中文字幕亚洲不卡| 成人欧美一区二区三区1314| 久久久精品影视| 91麻豆精品国产自产在线| 在线观看国产日韩| 国产99久久久国产精品潘金| 亚洲最色的网站| 午夜精品福利在线| 亚洲专区一二三| 日本中文字幕一区二区有限公司| 综合久久国产九一剧情麻豆| 亚洲精品免费视频| 亚洲一区在线观看免费| 一区二区三区美女| 午夜欧美大尺度福利影院在线看| 亚洲情趣在线观看| 亚洲综合色在线| 九色porny丨国产精品| 日本成人在线一区|