Skip to content

    johannakarras/DreamPose

    Repository files navigation

    DreamPose

    Official implementation of "DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion" by Johanna Karras, Aleksander Holynski, Ting-Chun Wang, and Ira Kemelmacher-Shlizerman.

    Teaser Image

    Demo

    You can generate a video using DreamPose using our pretrained models.

    1. Download and unzip the pretrained models inside demo/custom-chkpts.zip
    2. Download and unzip the input poses inside demo/sample/poses.zip
    3. Run demo.py using the command below:
      python test.py --epoch 499 --folder demo/custom-chkpts --pose_folder demo/sample/poses  --key_frame_path demo/sample/key_frame.png --s1 8 --s2 3 --n_steps 100 --output_dir demo/sample/results --custom_vae demo/custom-chkpts/vae_1499.pth
      

    Data Preparation

    To prepare a sample for finetuning, create a directory containing train and test subdirectories containing the train frames (desired subject) and test frames (desired pose sequence), respectively. Note that the test frames are not expected to be of the same subject. See demo/sample for an example.

    Then, run DensePose using the "densepose_rcnn_R_50_FPN_s1x" checkpoint on all images in the sample directory. Finally, reformat the pickled DensePose output using utils/densepose.py. You need to change the "outpath" filepath to point to the pickled DensePose output.

    Download or Finetune Base Model

    DreamPose is finetuned on the UBC Fashion Dataset from a pretrained Stable Diffusion checkpoint. You can download our pretrained base model from Google Drive, or finetune pretrained Stable Diffusion on your own image dataset. We train on 2 NVIDIA A100 GPUs.

    accelerate launch --num_processes=4 train.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" --instance_data_dir=../path/to/dataset --output_dir=checkpoints --resolution=512 --train_batch_size=2 --gradient_accumulation_steps=4 --learning_rate=5e-6 --lr_scheduler="constant" --lr_warmup_steps=0 --num_train_epochs=300 --run_name dreampose --dropout_rate=0.15 --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
    

    Finetune on Sample

    In this next step, we finetune DreamPose on a one or more input frames to create a subject-specific model.

    1. Finetune the UNet

      accelerate launch finetune-unet.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4" --instance_data_dir=demo/sample/train --output_dir=demo/custom-chkpts --resolution=512 --train_batch_size=1 --gradient_accumulation_steps=1 --learning_rate=1e-5 --num_train_epochs=500 --dropout_rate=0.0 --custom_chkpt=checkpoints/unet_epoch_20.pth --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
      
    2. Finetune the VAE decoder

      accelerate launch --num_processes=1 finetune-vae.py --pretrained_model_name_or_path="CompVis/stable-diffusion-v1-4"  --instance_data_dir=demo/sample/train --output_dir=demo/custom-chkpts --resolution=512  --train_batch_size=4 --gradient_accumulation_steps=4 --learning_rate=5e-5 --num_train_epochs=1500 --run_name finetuning/ubc-vae --revision "ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
      

    Testing

    Once you have finetuned your custom, subject-specific DreamPose model, you can generate frames using the following command:

    python test.py --epoch 499 --folder demo/custom-chkpts --pose_folder demo/sample/poses  --key_frame_path demo/sample/key_frame.png --s1 8 --s2 3 --n_steps 100 --output_dir results --custom_vae demo/custom-chkpts/vae_1499.pth
    

    Acknowledgment

    This code is largely adapted from the Hugging Face diffusers repo.

    About

    Official implementation of "DreamPose: Fashion Image-to-Video Synthesis via Stable Diffusion"

    Resources

    License

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Languages

    主站蜘蛛池模板: 能在线观看的一区二区三区| 亚洲一区二区三区四区视频 | 日本片免费观看一区二区| 无码精品人妻一区| 国产成人精品无码一区二区| 国产主播在线一区| 国产精品熟女一区二区| 国产伦精品一区二区三区无广告| 任你躁国产自任一区二区三区| 一区二区三区在线|欧| 一区二区三区四区在线视频| 亚洲av无码一区二区三区天堂古代| 动漫精品专区一区二区三区不卡| 国产无线乱码一区二三区| 福利在线一区二区| 一区二区三区四区视频| 亚洲夜夜欢A∨一区二区三区| 女人18毛片a级毛片一区二区| 中文字幕日韩一区二区不卡| 无码日韩精品一区二区免费暖暖| www亚洲精品少妇裸乳一区二区| 久久久久人妻精品一区三寸| 亚洲国产成人久久一区二区三区 | 亚洲国产日韩一区高清在线 | 国产电影一区二区| 国产一区二区三区乱码网站| 亚洲一区二区三区写真| 免费高清在线影片一区| 国产精品无码一区二区三区在| 无码喷水一区二区浪潮AV| 国产一区内射最近更新| 中文字幕在线精品视频入口一区| 丝袜人妻一区二区三区| 亚洲国产日韩一区高清在线| 无码人妻一区二区三区兔费| 人成精品视频三区二区一区| 台湾无码AV一区二区三区| 亚洲AV成人一区二区三区观看| 国产精品亚洲专一区二区三区| 国产在线精品一区二区夜色| 无码国产精品一区二区免费16|