亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

Deeplearning4j Suite Overview

Introduction to core Deeplearning4j concepts.

Eclipse DeepLearning4J

Eclipse Deeplearning4j is a suite of tools for running deep learning on the JVM. It's the only framework that allows you to train models from java while interoperating with the python ecosystem through a mix of python execution via our cpython bindings, model import support, and interop of other runtimes such as tensorflow-java and onnxruntime.

Consider going to our Quickstart for an overview of where to get started. If you have dependency issues please use our Required Dependencies guide.

The use cases include importing and retraining models (Pytorch, Tensorflow, Keras) models and deploying in JVM Micro service environments, mobile devices, IoT, and Apache Spark. It is a great compliment to your python environment for running models built in python, deployed to or packaged for other environments.

Deeplearning4j has several submodules including:

  1. Samediff: a tensorflow/pytorch like framework for execution of complex graphs. This framework is lower level, but very flexible. It's also the base api for running onnx and tensorflow graphs.

  2. Nd4j: numpy ++ for java. Contains a mix of numpy operations and tensorflow/pytorch operations.

  3. Libnd4j: A lightweight, standalone c++ library enable math code to run on different devices. Optimizable for running on a wide variety of devices.

  4. Python4j: A python script execution framework easing deployment of python scripts in to production.

  5. Apache Spark Integration: An integration with the Apache Spark framework enabling execution of deep learning pipelines on spark

  6. Datavec: A data transformation library converting raw input data to tensors suitable for running neural networks on.

How to use this website

This website follows the divio framework layout. This website has several sections of documentation following this layout. Below is an overview of the sections of the site:

  1. Multi project contains all cross project documentation such as end to end training and other whole project related documentation. This should be the default entry point for those getting started.

  2. Deeplearning4j contains all of the documentation related to the core deeplearning4j apis such as the multi layer network and the computation graph. Consider this the high level framework for building neural networks. If you would like something lower level like tensorflow or pytorch, consider using samediff

  3. Samediff contains all the documentation related to the samediff submodule of ND4j. Samediff is a lower level api for building neural networks similar to pytorch or tensorflow with built in automatic differentiation.

  4. Datavec contains all the documentation related to our data transformation library datavec.

  5. Python4j contains all the documentation related to our cpython execution framework python4j.

  6. Libnd4j contains all the documentation related to our underlying C++ framework libnd4j.

  7. Apache Spark contains all of the documentation related to our Apache Spark integration.

  8. Concepts/Theory contains all of the documentation related to general mathematical or computer science theory needed to understand various aspects of the framework.

Open Source

The libraries are completely open-source, Apache 2.0 under open governance at the Eclipse foundation. The Eclipse Deeplearning4j project welcomes all contributions. See our community and our Contribution guide to get involved.

JVM/Python/C++

Deeplearning4j can either be a compliment to your existing workflows in python and c++ or a standalone library for you to build and deploy models. Use what components you find useful.

Last updated

Was this helpful?

亚洲国产爱久久全部精品_日韩有码在线播放_国产欧美在线观看_中文字幕不卡在线观看

    
    

    9000px;">

      
      

      久久综合狠狠综合久久综合88| 欧美tickling挠脚心丨vk| 欧美午夜精品理论片a级按摩| 亚洲成人综合视频| 精品国产污污免费网站入口| 三级不卡在线观看| 在线观看国产日韩| 久久久噜噜噜久久人人看 | 欧美日韩dvd在线观看| 亚洲欧洲韩国日本视频| 奇米影视一区二区三区小说| 欧美高清一级片在线| 亚洲精品v日韩精品| 国内成+人亚洲+欧美+综合在线| 欧美日韩国产综合一区二区 | 一区二区在线观看视频在线观看| 日韩午夜精品电影| 奇米精品一区二区三区在线观看| 99综合电影在线视频| 日韩欧美国产精品| 国内精品视频666| 欧美色图激情小说| 五月婷婷综合在线| 欧美不卡视频一区| 国产一区二区三区蝌蚪| 久久久精品影视| 在线综合视频播放| 激情综合色播激情啊| 中文幕一区二区三区久久蜜桃| 波多野结衣中文字幕一区二区三区| 制服.丝袜.亚洲.另类.中文| 极品少妇一区二区| 欧美电影免费观看高清完整版在线观看| 久久99久国产精品黄毛片色诱| 欧美激情在线一区二区三区| 91社区在线播放| 奇米777欧美一区二区| 久久先锋影音av鲁色资源网| 成人黄色一级视频| 国产欧美日韩一区二区三区在线观看| 99精品视频在线观看免费| 亚洲一区在线观看网站| 日韩久久精品一区| 色综合久久综合中文综合网| 久久国产视频网| 亚洲欧洲精品一区二区精品久久久| 精品视频一区 二区 三区| 国产一区二区福利| 亚洲国产毛片aaaaa无费看| www久久精品| 国产伦精品一区二区三区视频青涩| 亚洲欧美偷拍另类a∨色屁股| 91精品久久久久久久久99蜜臂| 三级在线观看一区二区| 中文字幕不卡的av| 日韩亚洲欧美中文三级| 91麻豆自制传媒国产之光| 秋霞电影网一区二区| 亚洲欧美在线视频观看| 精品粉嫩aⅴ一区二区三区四区| 在线视频欧美精品| 97se亚洲国产综合在线| 韩国成人福利片在线播放| 蜜桃av一区二区在线观看 | 久久成人久久鬼色| 一级日本不卡的影视| 欧美一区二区三区日韩| 91香蕉视频污在线| 国产一区欧美日韩| 日韩国产精品大片| 亚洲资源中文字幕| 亚洲精品综合在线| 精品国产1区二区| 亚洲国产精品一区二区尤物区| 国产婷婷色一区二区三区四区| 国产乱码精品一区二区三区五月婷 | 综合久久久久久久| 亚洲国产日韩av| 午夜不卡av在线| 久久国产福利国产秒拍| 成人免费精品视频| 欧美久久一二三四区| 欧美成人性战久久| 国产精品天天看| 日本不卡在线视频| 99久久综合精品| 日韩欧美你懂的| 亚洲欧美一区二区三区国产精品 | 久久精品人人做人人爽人人| 成人免费在线观看入口| 亚洲电影你懂得| 国产精品77777| 欧美日韩精品免费| 中文字幕亚洲精品在线观看| 亚洲超碰97人人做人人爱| 国产一区二区三区国产| 欧美日韩一区不卡| 亚洲欧洲av色图| 国内精品久久久久影院薰衣草| 91国产精品成人| 欧美国产日本韩| 亚洲五码中文字幕| 亚洲国产精品影院| 成人精品一区二区三区四区 | 国产亚洲欧洲997久久综合| 一区二区三区中文字幕| 99在线精品一区二区三区| 亚洲三级视频在线观看| 精品国产乱码久久久久久夜甘婷婷| 久久免费午夜影院| 欧美成人艳星乳罩| 亚洲一区视频在线观看视频| 久久99国产精品久久| 欧美三级视频在线观看| 国产精品美女一区二区三区 | 欧美在线不卡一区| 国产精品无码永久免费888| 日本不卡123| 67194成人在线观看| 一区二区成人在线| 在线观看视频一区二区欧美日韩| 中文字幕一区日韩精品欧美| 国产成都精品91一区二区三| 精品久久久久久久久久久久久久久久久 | 亚洲最新视频在线播放| 成人黄色av网站在线| 久久久久国产精品免费免费搜索| 麻豆91免费观看| 欧美一区二区三区啪啪| 青青青爽久久午夜综合久久午夜| 在线成人午夜影院| 天天综合日日夜夜精品| 91精品国产一区二区| 日本大胆欧美人术艺术动态| 日韩一区二区视频在线观看| 久久99国产精品尤物| 欧美电视剧在线看免费| 国产综合色在线视频区| 国产区在线观看成人精品| a在线欧美一区| 一级特黄大欧美久久久| 欧美久久一区二区| 国产在线精品国自产拍免费| 国产精品毛片a∨一区二区三区| 91网上在线视频| 欧美aaaaaa午夜精品| 久久青草欧美一区二区三区| 99久久精品国产一区| 亚洲一区二区三区四区不卡 | 制服.丝袜.亚洲.中文.综合| 久久99精品一区二区三区| 国产精品视频第一区| 欧美在线观看一区| 久久91精品久久久久久秒播| 亚洲国产电影在线观看| 在线观看视频91| 蜜臂av日日欢夜夜爽一区| 中文乱码免费一区二区| 欧美日韩国产色站一区二区三区| 麻豆一区二区99久久久久| 国产精品麻豆网站| 在线播放91灌醉迷j高跟美女 | 国产乱子伦视频一区二区三区 | 自拍偷拍国产精品| 精品视频在线看| 国产+成+人+亚洲欧洲自线| 亚洲小说春色综合另类电影| 2022国产精品视频| 欧美日韩国产另类不卡| 成人手机在线视频| 久久国产三级精品| 亚洲一区二区三区在线看| 久久久高清一区二区三区| 5月丁香婷婷综合| 91福利精品视频| 不卡av免费在线观看| 国产乱码一区二区三区| 麻豆视频一区二区| 偷窥国产亚洲免费视频| 国产精品乱码人人做人人爱| 欧美一级夜夜爽| 欧美日韩高清在线| 91成人国产精品| 99久久er热在这里只有精品15| 精品一区二区三区视频在线观看| 亚洲综合在线电影| 亚洲手机成人高清视频| 国产校园另类小说区| 欧美精品久久久久久久久老牛影院| caoporn国产一区二区| 国产乱码精品一区二区三区忘忧草| 亚洲一区二区三区美女| 国产精品伦一区二区三级视频| 久久久噜噜噜久噜久久综合| 日韩色在线观看| 91精品国产日韩91久久久久久| 色婷婷久久久久swag精品 | 欧美日韩你懂的| 91福利在线看| 欧美精品日韩综合在线|