Skip to content

    FaceAdapter/Face-Adapter

    Repository files navigation

    Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control

    arXiv GitHub

    Introduction

    Face-Adapter is an efficient and effective face editing adapter for pre-trained diffusion models, specifically targeting face reenactment and swapping tasks.

    Release

    • [2024/5/25] ?? We release the gradio demo.
    • [2024/5/24] ?? We release the code and models.

    Installation

    # Torch >= 2.0 recommended for acceleration without xformers
    pip install accelerate diffusers==0.26.0 insightface onnxruntime
    
    

    Download Models

    You can download models of FaceAdapter directly from here or download using python script:

    # Download all files 
    from huggingface_hub import snapshot_download
    snapshot_download(repo_id="FaceAdapter/FaceAdapter", local_dir="./checkpoints")
    
    # If you want to download one specific file
    from huggingface_hub import hf_hub_download
    hf_hub_download(repo_id="FaceAdapter/FaceAdapter", filename="controlnet/config.json", local_dir="./checkpoints")

    To run the demo, you should also download the pre-trained SD models below:

    ? Quick Inference

    SD_1.5

    python infer.py 

    You can adjust the cropping size with the --crop_ratio (default:0.81)parameter. But be careful not to set the crop range too large, as this can decrease the quality of the generated images due to the limit of the training data size.

    ?? FaceAdapter can be seamlessly plugged into community models:

    python infer.py --base_model "frankjoshua/toonyou_beta6"

    Disclaimer

    This project strives to positively impact the domain of AI-driven image generation. Users are granted the freedom to create images using this tool, but they are expected to comply with local laws and utilize it in a responsible manner. The developers do not assume any responsibility for potential misuse by users.

    Citation

    If you find Face-Adapter useful for your research and applications, please cite using this BibTeX:

    @article{han2024face,
      title={Face Adapter for Pre-Trained Diffusion Models with Fine-Grained ID and Attribute Control},
      author={Han, Yue and Zhu, Junwei and He, Keke and Chen, Xu and Ge, Yanhao and Li, Wei and Li, Xiangtai and Zhang, Jiangning and Wang, Chengjie and Liu, Yong},
      journal={arXiv preprint arXiv:2405.12970},
      year={2024}
    }

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published

    Contributors 2

    •  
    •  

    Languages

    主站蜘蛛池模板: 国产天堂在线一区二区三区| 久久AAAA片一区二区| 色窝窝无码一区二区三区| 亚洲欧洲∨国产一区二区三区| 97se色综合一区二区二区| 精品国产不卡一区二区三区| 在线欧美精品一区二区三区| 波多野结衣AV无码久久一区| 国产成人无码aa精品一区| 天堂va在线高清一区| 一区二区免费视频| 奇米精品一区二区三区在线观看| 免费视频精品一区二区| 国内精自品线一区91| 亚无码乱人伦一区二区| 亚洲国产欧美一区二区三区| 免费无码毛片一区二区APP| 日本在线一区二区| 亚洲综合色自拍一区| 东京热人妻无码一区二区av| 少妇无码AV无码一区| 亚洲国产成人一区二区精品区| 精品一区二区在线观看| 免费日本一区二区| 奇米精品视频一区二区三区| 一区二区三区视频在线| 91一区二区三区四区五区| 精品一区二区三区四区在线播放| 精品国产a∨无码一区二区三区| 日日摸夜夜添一区| 日韩精品中文字幕视频一区| 日本一区二区三区免费高清在线| 国产成人综合亚洲一区| 精品亚洲一区二区三区在线观看| 三上悠亚日韩精品一区在线| 亚洲av鲁丝一区二区三区| 无码人妻精品一区二区三区99性| 国产未成女一区二区三区| 深夜福利一区二区| 精品一区二区在线观看| 亚洲一区二区三区高清在线观看|